Myanmar Continuous Speech Recognition System Using Convolutional Neural Network
نویسندگان
چکیده
منابع مشابه
EMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملSpeech Command Recognition with Convolutional Neural Network
This project aims to build an accurate, smallfootprint, low-latency Speech Command Recognition system that is capable of detecting predefined keywords. Using the Speech Commands Dataset provided by Google’s TensorFlow and AIY teams, we have implemented different architectures using different machine learning algorithms. Our models include: Vanilla Single-Layer softmax model, Deep Neural Network...
متن کاملVehicle Color Recognition using Convolutional Neural Network
Vehicle color information is one of the important elements in ITS (Intelligent Traffic System). In this paper, we present a vehicle color recognition method using convolutional neural network (CNN). Naturally, CNN is designed to learn classification method based on shape information, but we proved that CNN can also learn classification based on color distribution. In our method, we convert the ...
متن کاملRecognition of continuous speech using neural nets and expert system
A system for recognising continuously spoken sentences is presented. The system has a vocabulary of approx. 35 words and a granunar specifying a few thousand sentences. The system operates in three stages. In the frrst stage, cepstrum vectors are computed in real time and used as input to a self organised neural network. The output of the network is mapped to a continuous valued acoustic phonet...
متن کاملDeep Recurrent Convolutional Neural Network: Improving Performance For Speech Recognition
A deep learning approach has been widely applied in sequence modeling problems. In terms of automatic speech recognition (ASR), its performance has significantly been improved by increasing large speech corpus and deeper neural network. Especially, recurrent neural network and deep convolutional neural network have been applied in ASR successfully. Given the arising problem of training speed, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Image, Graphics and Signal Processing
سال: 2021
ISSN: ['2074-9082', '2074-9074']
DOI: https://doi.org/10.5815/ijigsp.2021.02.04